2018 David L. Weaver Lecture: Wednesday April 25th, 3pm, GBSF 1005

david_weaverOverview

The David L. Weaver Endowed Lecture Series in Biophysics and Computational Biology is dedicated to the memory of David L. Weaver, a prominent biophysics researcher and professor at Tufts University.

About Dr. Weaver

Dr. Weaver made significant contributions to the understanding of protein folding. He was impressed with the research and faculty at the UC Davis Genome Center, where he was planning to spend his sabbatical year 2006–2007. Dr. Weaver focused his early research on high-energy physics, studying photon production and elementary particles. After spending a year and a half as a NATO Fellow at the European Center for Nuclear Research (CERN), in Geneva, Switzerland, he returned to Tufts and began to think about how he could apply his physics background to problems in biology. While he continued to make significant contributions in high-energy physics, for which he received tenure at Tufts in 1969, Dr. Weaver's interests continued to shift towards some of the key unsolved problems in biology. At the University of Rome, Italy, as a visiting CNN Fellow at the Frascati National Laboratory, he became more and more interested in applying his mathematical skills to gain a better understanding of molecular dynamics. He visited Dr. Martin Karplus at Harvard during a sabbatical in 1972, and they began a collaboration that culminated in a paper about a then theoretical diffusion-collision model for protein folding (Nature, 1976). The Diffusion-Collision Model was ahead of its time because the data needed to test it were not available when it was published in 1976. But by the mid-1990s experimental studies had shown that the model did indeed describe the folding mechanism of many proteins. The field has been completely transformed in recent years because of its assumed importance for understanding the large number of protein sequences available from genome projects, says Karplus, and because of the realization that misfolding can lead to a wide range of human diseases. Dr. Weaver received grants from NASA, NATO, Bruker Optics, and the NIH to establish computer facilities at Tufts where he continued to work with students, Dr. Karplus and other collaborators to improve his understanding of important biophysical problems. He was a regular visitor at labs overseas and in the United States, and he authored or co-authored a number of significant scientific publications. He held degrees in Chemistry from Rensselaer Polytechnic Institute and in Physical Chemistry from Iowa State University. A Fellow of the American Physical Society, Dr Weaver also served as the chair of the Tufts Department of Physics and Astronomy from 1989 to 2002. He was born in Albany, NY, on April 18th, 1937. David Weaver possessed an easy manner, a sense of fairness, curiosity and an enjoyment of life that was evident in his teaching and relations with colleagues. All who knew him will miss his kind and cheerful humor, his smile and his generous spirit.

The 2018 Lecture: Professor Joseph (Jody) Puglisi —'The Delicate Dance of Translation'

Date: Wednesday, April 25th 2018, 3pm, GBSF 1005.

The activity of 5WNP, a ribosomal subunit, can be perturbed by epigenetic modification of mRNA.

Proteins are synthesized using the genetic code by the ribosome, a large RNA-protein machine. While many structures of ribosomes and their complexes have been determined in the past two decades, they remain as still-life portraits. We have developed and applied single-molecule approaches to observe directly the delicate dance of the ribosome and its partners during translation. The results of this work highlight the role of dynamics in translational processes in health and disease.

About Jody Puglisi

Dr. Puglisi received his B.S. degree in Chemistry from the John Hopkins University, Ph.D. Degree in Biophysical Chemistry from the University of California at Berkeley, and postdoctoral training in biophysics at the University of Strasbourg, France, and MIT. He joined Stanford University as an Associate Professor and director of the Stanford Magnetic Resonance Lab in 1997 and has been there ever since. Jody is an EMBO fellow (1988), a Camille and Henri Dreyfus Teacher Scholar (1993), a David and Lucille Packard fellow (1994), an A.P. Sloan fellow (1997), and a recipient of a NIH merit award (2011). He is a member of the National Academy of Sciences (2014).

Key publications:

1. J. Choi, G. Indrisiunaite, H. DeMirci, K.W. Ieong, J. Wang, A. Petrov, A. Prabhakar, G. Rechavi, D. Dominissini, C. He, M. Ehrenberg & J.D. Puglisi. 2′-O- methylation in mRNA disrupts tRNA decoding during translation elongation Nat Struct Biol. 26, 208-216 (2010) 2. J. Chen, A. Coakley, M. O’Connor, A. Petrov, S.E. O’Leary, J. Atkins, J. Puglisi. Coupling of mRNA Structure Rearrangement to Ribosome Movement during Bypassing of Non-coding Regions, Cell 163, 1267-1280 (2015) 3. J. Chen, A. Petrov, M. Johansson, A. Tsai, S.E. O’Leary, J.D. Puglisi. Dynamic pathways of −1 translational frameshifting. Nature 512, 328-332 (2014) 4. E.V. Puglisi, J.D. Puglisi. Secondary structure of the HIV reverse transcription initiation complex by NMR. J Mol Biol. 410, 863-874 (2011). 5. C.E. Aitken CE, J.D. Puglisi. Following the intersubunit conformation of the ribosome during translation in real time. Nat Struct Mol Biol. 17, 793-800 (2010). 6. S. Uemura, C.E. Aitken, J. Korlach, B.A. Flusberg, S.W. Turner, J.D. Puglisi. Real-time tRNA transit on single translating ribosomes at codon resolution. Nature 464, 1012-1017 (2010). 7. S.C. Blanchard, R.L. Gonzalez, H.D. Kim, S. Chu, J.D. Puglisi. tRNA selection and kinetic proofreading in translation, Nat. Struct. Mol. Biol. 11, 1008-1014 (2004) 8. P.J. Lukavsky, I. Kim, G.A. Otto, J.D. Puglisi. Structure of HCV IRES domain II determined by NMR Nat. Struct. Biol. 10, 1033-1038 (2003) 9. D. Fourmy, M.I. Recht, S.C. Blanchard, J.D. Puglisi. Structure of the A Site of Escherichia coli 16S Ribosomal RNA Complexed with an Aminoglycoside Antibiotic. Science 274, 1367-1371 (1996).  

Giving Opportunities

The endowed lecture series was established by David's family, just one of many ways in which people have helped make a difference in advancing UC Davis's commitments to teaching, research, and public service.

Previous Lectures

  • 2017: Professor Angela M. Gronenbron, Structural Biology, University of Pittsburgh. Synergy between NMR, cryo-EM and large-scale MD simulations – An all atom model of a native HIV capsid. (video)
  • 2016: Professor Sir Tom Blundell, Biochemistry, University of Cambridge. Biophysics, Computational Biology and the Discovery of New Medicines: The Emergence of Resistance in Cancer and Tuberculosis. (video)
  • 2015: Professor Stephen Quake, School of Engineering, Stanford University and Howard Hughes Medical Institute. Single Cell Genomics. (video)
  • 2014: Professor Arup Chakraborty, Laboratory for Computational Immunology, Massachusetts Institute of Technology. How to Hit HIV Where It Hurts.
  • 2013: Professor Joanna Aizenberg, Harvard University, School of Engineering and Applied Science. Novel Biomimetic 'Spiny' Surfaces in Medical Applications.
  • 2012: Professor Cheryl Arrowsmith, Structure Genomic Consortium, Department of Medical Biophysics, University of Toronto. Structural and Chemical Biology of Epigenetic Regulators.
  • 2011: Professor John Kuriyan, Chancellor's Professor, Department of Molecular and Cell Biology and Department of Chemistry, University of California, Berkeley. Molecular Mechanisms in Signal Transduction by Tyrosine Kinases.
  • 2010: Professor Susan Lindquist, Whitehead Institute for Biomedical Research, Howard Hughes Medical Institute, Broad Institute of MIT and Harvard Department of Biology, MIT. Protein Folding Driving the Evolution of Genomes.
  • 2009: Professor Gregory Petsko, Gyula and Katica Tauber Professor, Department of Biochemistry and Chemistry, Brandeis University, Adjunct Professor, Department of Neurology and Center for Neurological Diseases, Harvard Medical School. Structural Neurology: Understanding, Treating and Preventing Neurodegenerative Diseases.
  • 2008: Professor Christopher Dobson, John Humphrey Plummer Professor of Chemical and Structural Biology, Master of St. Johns College, Cambridge University, United Kingdom. Life on the Edge: The Nature and Origins of Protein Misfolding Diseases.
    • Invited guest speaker, Professor Rohit Pappu, Washington University, A Student's Remembrance of David Weaver.
  • 2007: Professor Martin Karplus, Laboratoire de Chimie Biophysique, ISIS, Universite Louis Pasteur and Department of Chemistry and Chemical Biology, Harvard University, 2013 Nobel Prize in Chemistry,  How Proteins Work: Insights from Simulations.
    • Opening remarks by Dirk Laukien, Ph.D., Senior Scientific Fellow, Bruker Optics, Unfolding David Weaver's Contributions at Bruker Optics.

Primary Category